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Seed predator preferences are associated with seed traits
but an unlikely mechanism of local extinction
Sarah E. Johnson1 , Meredith A. Zettlemoyer1,2,3

Certain traits, including those that make species more vulnerable to consumption by predators, may make species inherently sus-
ceptible to population declines and local species loss (i.e. extirpation). To examine whether small mammal and arthropod granivory
is a mechanism of community change via association with extirpation events, we studied seed predation on six phylogenetically
paired extirpated and extant species from Kalamazoo, Michigan, using a seed removal experiment in a restored prairie. We also
examined differences in granivore preferences for seed traits (seed mass, water content, C:N content) and differences in seed traits
between extirpated and extant taxa. Granivory was independent of extirpation status but was affected by seed traits. Small mam-
mals consumed more seeds than arthropods and preferentially consumed large seeds, while arthropods consumed small seeds and
those with higher C:N ratios (lower nitrogen content). Extirpated and extant taxa did not differ in seed traits, perhaps explaining
why they did not differ in granivory. Granivory was phylogenetically conserved, suggesting that certain plant families are more
susceptible to granivores than others. This study indicates that granivory varies across species and seed traits in a prairie restora-
tion, but does not likely influence extirpation in this system. Understanding granivore preferences may help managers predict
establishment success for rare or extirpated species with particular traits being introduced into prairie restorations.
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Implications for Practice

• To counteract the effects of small mammal granivory on
large-seeded and nitrogen-rich species in restorations
with large small mammal populations, practitioners might
want to selectively apply granivore deterrents, add addi-
tional seeds of these species to seed mixes, or sow seeds
during seasons with the least granivore activity.

• Granivores equally consumed common extant species
and extirpated species, suggesting that restorations aim-
ing to reintroduce rare or threatened species may not need
to compensate for higher seed predation on rare species.

Introduction

Contemporary plant extinctions exceed historical rates of species
loss (Le Roux et al. 2019). Although local species losses
(i.e. extirpations) often reflect global extinction risks (Davies 2019),
we still have a limited understanding of mechanisms underlying
extirpation events, which are ultimately a series of reductions in plant
population performance (Collen et al. 2010). Consumers, which can
damage plant performance via tissue and seed loss, can fundamen-
tally alter plant population dynamics and abundance (Maron &
Crone 2006). Granivory, or seed predation, influences plant commu-
nity composition (Howe & Brown 2001; Pellish et al. 2017) and
population abundance (Bricker et al. 2010; Chen & Valone 2017)
by increasing seed limitation (Orrock et al. 2006; Combs
et al. 2013) and reducing seedling establishment (Orrock
et al. 2009; Pellish et al. 2017; Lucero & Callaway 2018).

Granivores can also negatively affect plant population growth rates
(Bricker &Maron 2012; Kurkjian et al. 2017), potentially contribut-
ing to population declines and eventual extirpation. Rare species in
particular have the potential to be driven to extirpation by seed pred-
ators (Kurkjian et al. 2017). Seed predation is higher in rare species
than common congeners (i.e. species in the same genus) in a shrub-
steppe ecosystem, leading to lower seed production in the rare spe-
cies (Combs et al. 2013) and suggesting that seed predation could
contribute to rarity and population decline. Comparative approaches
between closely related extirpated and extant species could elucidate
potential mechanisms underlying differences in abundance
(or extirpation) between species (Bevill & Louda 1999). Specifi-
cally, comparing granivory on closely-related extirpated versus
extant taxa could allow us to investigate whether differences in gran-
ivore preferences correlate with local species extinctions, indepen-
dently of differences in phylogeny or ecology (Combs et al. 2013).

Granivore preferences and subsequent effects on plant popu-
lations likely vary depending on consumer identity and plant
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traits. Small mammals and arthropods often differ in their seed
preferences (Pulliam & Brand 1975; Mittelbach & Gross 1984;
Linabury et al. 2019). Seed size is an important seed quality that
can influence consumer preference: while small mammals often pre-
fer large-seeded species (Abramsky 1983; Celis-Diez et al. 2004;
Connolly et al. 2014; Chen & Valone 2017; Dylewski et al. 2020),
arthropods tend to consume smaller seeds (Mittelbach &
Gross 1984; Pearson et al. 2014). Granivores may also consume
seeds with particular nutritional and morphological features such
as seeds with high calorie, carbohydrate (Kelrick et al. 1986),
water (Frank 1988), fat (Xiao et al. 2006), nitrogen (Gong
et al. 2015), or oil content (Clause et al. 2017), although few stud-
ies have distinguished between small mammal versus arthropod
preferences for these traits.

Seed traits that influence vulnerability to granivores may dif-
fer between extirpated and extant taxa. For example, seed size is
often related to seed production and competitive ability
(Westoby et al. 2002), which may be lower in extirpated relative
to extant species. If granivory contributed to local species
declines, extirpated species might also have traits that make
them more or less susceptible to certain seed predators. For
instance, if extirpated species generally have smaller seeds, they
might be more vulnerable to arthropods than small mammals.
Trait-based approaches allow us to generalize plant responses
to specific factors (McGill et al. 2006). If elevated granivory is
associated with extirpation, identifying seed traits that affect
species’ susceptibility to seed predation could be useful for pre-
dicting extirpation risk.

Understanding granivore preferences in threatened habitats,
such as native tallgrass prairies, could help us understand the
role of seed predators in the decline of taxa once predominantly
found in such habitats. Additionally, habitat restoration is a way
to return lost biodiversity to an area (Suding 2011). Understand-
ing patterns of seed predation in restored populations may help
us predict species’ success and design management strategies
accounting for seed predation rates on specific species or for
species with traits correlated with high granivory (Pearson
et al. 2018; Taylor et al. 2020). Moreover, seed predators can
cost $180–250 per hectare in restorations (Pellish et al. 2017),
so understanding seed removal rates for species included in res-
toration mixes could help ameliorate costs due to seed predation
(Linabury et al. 2019), particularly for threatened species that
are being reintroduced.

Here, we use a seed removal experiment to examine the roles
of seed consumer, extirpation status, and seed traits in granivory
patterns in a restored prairie. We addressed the following ques-
tions: (1) Do extirpated and extant prairie species differ in their
seed traits? (2) Do extirpated and extant prairie species differ in
seed removal rates by small mammals versus arthropods? (3) Do
small mammals and arthropods demonstrate different prefer-
ences for seed traits, and do these patterns differ between extir-
pated and extant species?

Methods

Kalamazoo County, Michigan, U.S.A., supports only 0.0006%
of its historic prairie acreage (Zettlemoyer & Srodes 2019) and

lost 14.01% of its native prairie species between 1890 and
2004 (Hanes & Hanes 1947; McKenna 2004; Zettlemoyer
et al. 2019). Using historical botanical records, we identified
all the extirpated, native, long-lived perennial, prairie specialist
(i.e. were not recorded in any other habitat type in Kalamazoo)
forbs once found in Kalamazoo’s prairies and savannas. For
each extirpated species, we selected the most closely related
(same plant family, or confamilial) extant species that was also
a native, perennial, and prairie specialist forb. We then selected
six of these confamilial pairs that ranged in seed size (Table 1).
For more details on historical datasets and extirpation in Kala-
mazoo County, see Zettlemoyer et al. (2019). Although habitat loss
and other anthropogenic changes (e.g. invasion, nutrient addition,
climate change; ongoing experiments are testing several of these
potential drivers) likely influence species loss in this area, seed pre-
dation can also contribute to population declines in grasslands
(Bricker & Maron 2012). We also note that although these species
became extirpated in the last 100 years, they may have experienced
differential seed predation for much longer; however, we do not
know how long these species have been declining or if seed preda-
tion influenced their extirpation. These extirpated and extant species
were experimentally reintroduced into a circa 20-year-old restored
prairie at the Boudeman Farm, Richland, Michigan, in 2017. Seeds
were sourced from Midwestern nurseries, as local to Michigan as
possible, including Michigan Wildflower Farm (Portland, Michi-
gan), Naturally Native Nursery (South Bend, Indiana), Agrecol
(Edgerton, Wisconsin), and Prairie Moon (Winona, Minnesota).
In spring 2017, we transplanted seedlings of all 12 species into an
experiment manipulating two common drivers of species loss in
prairies, nitrogen addition and deer herbivory (n = 10 seedlings/
species � 20 plots � 12 species = 2,400 seedlings); we surveyed
populations annually.

To test whether extirpated and extant species differ in seed
predation by small mammal versus arthropod granivores, we
set up granivore sampling stations at Boudeman Farm in July
2019. We elected to use Boudeman Farm, despite its age,
because populations of the extirpated species had established
there (see above). However, this study assumes that ongoing
seedling establishment by perennial species contributes to com-
munity composition in this established prairie. We set out
40 sampling stations across two transects placed 20 m apart.
Transects were placed 20 m from the edge of the prairie to con-
trol for edge effects (Donoso et al. 2003; Germain et al. 2013).
Each transect had 20 sampling stations, each 3 m apart. Each
station contained four seed trays (n = 4 seed trays � 20
stations � 2 transects = 160 trays; Fig. 1A). Two types of seed
trays were constructed from Glad Tupperware containers
(15 cm2, 5.5 cm deep) with holes (4 � 7 cm) cut into two adja-
cent sides to either (1) allow arthropods and small mammals to
enter and consume seeds (“All Consumer” trays) or (2) had
hardware mesh (0.5 cm2 opening) adhered across the holes to
permit arthropods but exclude mammals (“Arthropod Only”
trays) (following Linabury et al. 2019). Lids were placed on
the containers to prevent seeds from washing away with rain
and to prevent seed predation by birds, another seed predator
(Kelt et al. 2004) but not a focus of this study. Although we
did not identify granivores in this study, likely seed predators
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in this system include beetles (unknown spp.), ants (including
Myrmica lobicornis), Peromyscus maniculatus (field mouse),
Zapus hudsonius (meadow jumping mouse), and Microtus
pennsylvanicus (meadow vole) (Mittelbach & Gross 1984;
Linabury et al. 2019). We used a field camera placed over six
randomly selected stations for a week each to observe small
mammals (Fig. 1B).

We placed two of each tray type at each station, facing out-
ward from each other, and covered the base of the containers
with a fine layer of sand. Because seeds from confamilial pairs
were similar in appearance, we could not place seeds from the
same pair into the same seed tray. We, therefore, separated each
confamilial pair between the two replicate trays of each con-
sumer type at each station (i.e. each tray contained 6/12 species).
Species were randomly assigned to trays, although species from
within each confamilial pair were always placed in separate
trays as described above (n = 20 seeds/species � 12
species � 2 tray types � 40 stations = 19,200 seeds). We
deployed seed trays on 9 July 2019 and collected the remaining

seeds 6 weeks later (five trays were destroyed by deer and not
collected). Removal rates for “All Consumer” and “Arthropod
Only” trays were calculated by subtracting the number of seeds
for each species that remained in the trays from the 20 seeds that
were originally deposited. We estimated small mammal graniv-
ory as seed removal in “All Consumer” minus “Arthropod
Only” trays (following Linabury et al. 2019).

We measured three species-level seed traits hypothesized to
influence granivore preferences: seed mass, water content, and
carbon to nitrogen (C:N) ratio. To estimate seed mass (mg),
we weighed 20 seeds per species and averaged their mass. To
estimate water content, we weighed 20 seeds per species (“wet
weight”), dried the seeds at 70�C for 48 hours, then reweighed
the seeds (“dry weight”). We estimated water content as wet
weight minus dry weight, then estimated percent water content
as water content/wet weight � 100. To estimate seed C:N ratio,
triplicate samples of ground seeds (2–5 mg of seed material/sam-
ple; n= 3 samples/species � 12 species= 36 samples) were dried,
finely ground, and packed in tin capsules. C:N ratio was measured

Table 1. Species (abbreviation) and plant family for the six confamilial pairs included in this study. Superscript LE indicates an extirpated species. We provide
the mean proportion of arthropod granivory, small mammal granivory, and total granivory on each species, mean granivory for extant and extirpated species over-
all, and mean total granivory by each consumer group. Values are least square means � standard error.

Species Family
Proportion Arthropod

Granivory
Proportion Small
Mammal Granivory

Proportion Total
Granivory

Baptisia tinctoria (L.) Vent. (BT) Fabaceae 0.124 � 0.042 0.137 � 0.043 0.277 � 0.042
Baptisia bracteata Nuhl. Ex Elliott (BB)LE Fabaceae 0.137 � 0.043 0.085 � 0.043 0.248 � 0.042
Eryngium yuccifolium Michx. (EY) Apiaceae 0.225 � 0.043 0.385 � 0.043 0.612 � 0.042
Thaspium trifoliatum (L.) A. Gray (TT)LE Apiaceae 0.240 � 0.043 0.307 � 0.043 0.561 � 0.042
Liatris aspera Michx. (LA) Asteraceae 0.321 � 0.042 0.439 � 0.042 0.760 � 0.041
Liatris punctata Hook. (LP)LE Asteraceae 0.192 � 0.043 0.517 � 0.044 0.714 � 0.043
Monarda fistulosa L. (MF) Lamiaceae 0.416 � 0.043 0.150 � 0.043 0.571 � 0.042
Pycnanthemum tenuifolium Schrad. (PT)LE Lamiaceae 0.354 � 0.043 0.103 � 0.043 0.464 � 0.042
Ratibida pinnata (Vent.) Barnhart (RP) Asteraceae 0.297 � 0.043 0.247 � 0.043 0.559 � 0.042
Ratibida columnifera (Nutt.) Woot. & Standl. (RC)LE Asteraceae 0.253 � 0.042 0.194 � 0.043 0.450 � 0.043
Silphium perfoliatum L. (SP) Asteraceae 0.032 � 0.043 0.950 � 0.043 0.975 � 0.043
Silphium terebinthinaceum Elliot non. Jacq. (ST) LE Asteraceae 0.025 � 0.043 0.915 � 0.043 0.927 � 0.042
Extant species overall mean 0.233 � 0.024 0.381 � 0.024 0.624 � 0.023
Extirpated species overall mean 0.198 � 0.024 0.351 � 0.024 0.561 � 0.024
Mean granivory by each consumer 0.218 � 0.017 0.369 � 0.017 0.593 � 0.017

Figure 1. (A) Experimental design. Stations (sets of four trays, each separated by 3 m; four stations shown here) were set out along two transects, each 20 m from
each other and from the edges of the prairie. Within each station, two trays were “All Consumer” trays (lavender), whose entrances (white panels) allowed
arthropods and small mammals to enter and consume seeds, and another two trays were “Arthropod Only” trays (light blue), which had hardware mesh (gray
panels) adhered across entrances to permit arthropods but exclude mammals. (B) Camera trap image of a field mouse in an “All Consumer” granivore tray.
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using C:N combustion analysis (Carlo Erba NA1500 Series II
Combustion Analyzer; Kellogg Biological Station Long-Term
Ecological Research; https://lter.kbs.msu.edu/protocols/147).

Data Analysis

To test whether extirpated and extant species differ in seed traits,
we performed three linear mixed models (Gaussian distribu-
tions), one for each trait. We included seed mass (mg), percent
water content, and C:N ratio as three separate response vari-
ables, status as the predictor variable, and species (nested within
status) as a random factor. To further investigate how extirpated
versus extant taxa differ in seed traits, we examined differences
in seed traits within each confamilial pair. We included the three
seed traits as separate response variables and status as the predic-
tor in separate models for each species pair.

To test whether consumer preferences varied between extant
and extirpated species, we conducted a linear mixed model using
the “lmer” function in the lme4 package in R (Bates et al. 2015;
R Core Team 2019) with status, consumer type (Small Mammal
[estimated as All Consumer � Arthropod Only] vs. Arthropod
Only), and their interaction as predictor variables, and proportion
seeds removed as the response variable. We included species

(nested within genus nested within pair) (species is included
because it is the unit of replication for tests of status; pair is included
to ensure comparisons are within each phylogenetic contrast) and
station (to control for spatial variation) as random factors.

Figure 2. Mean species trait values (least square means� SE) for (A) seed mass (mg), (B) water content (% of mass), and (C) C:N ratio. Red indicates extirpated
species; gray indicates extant species. Symbols indicate that extirpated and extant species within a confamilial pair differed in their trait value, where *p < 0.05
and §p < 0.1.

Figure 3. Proportion of extant versus extirpated species’ seeds removed
(least square means � SE) by arthropods (light blue) versus small mammals
(lavender; estimated as the difference in seed predation between “All
Consumer” and “Arthropod Only” trays). Letters represent differences at the
α = 0.05 level (Tukey tests).
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To test whether differences in trait values between extant and
extirpated species contribute to differences in consumer prefer-
ences between extant and extirpated species, we conducted two
linear mixed models. Because traits were measured at the species
level, we used species mean estimates of granivory by each con-
sumer type for this analysis (i.e. one model for mean mammal and
another for mean arthropod granivory). Species-level mean mam-
mal or arthropod granivory were included as the two separate
response variables. We included status, each species’ mean trait
values (mean seed mass [mg], mean percent water content, and

mean C:N ratio), and two-way interactions between status � each
trait as predictor variables in both models.

We also tested for phylogenetic signal in extirpation status, seed
traits, and granivory by small mammals and arthropods. We
obtained a phylogenetic tree from Phylomatic (phylodiversity.
net/phylomatic), using the Zanne et al. (2014) tree (Fig. S1). We
tested for phylogenetic conservatism with Blomberg’s K, which
compares the observed phylogenetic signal in a trait with the signal
under a Brownian motion model of trait evolution (“phylosignal”
function in the package “picante” v.1.3-0; Kembel et al. 2010).

Figure 4. Proportion of seeds removed by arthropods (light blue squares) versus and small mammals (lavender circles; estimated as the difference in seed predation
between “All Consumer” and “Arthropod Only” trays), depending on (A) seed mass (mg), (B) water content (% of mass), (C) C:N ratio. Granivory and traits are
estimated at the species level. The left and right columns show removal rates for extant and extirpated species, respectively. See Figure S2 for error estimates.
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K =0 indicates randomevolution;K=1 indicates trait conservatism;
K > 1 indicates species beingmore similar than expected (Blomberg
et al. 2003). “Phylosignal” also tests for greater phylogenetic signal
(“PIC.variance”) than expected; traits with PIC.variance p ≤ 0.05
shownon-randomphylogenetic signal. Sinceourestimatesofgraniv-
ory by both small mammals and arthropods were phylogenetically
conserved (Table S1), we performed phylogenetic generalized least
squares (PGLS) analyses for granivory estimates with Brownian
motionmodelsof trait evolution (Garlandet al. 1993;Martins&Han-
sen 1997).We incorporated the constructed phylogeny (Fig. S1) into
the covariance structure using the “ape” package (v.5; Paradis &
Schliep 2019). Small mammal and arthropod granivory were
included as two separate response variables, and status, seed mass,
water content, C:N, and two-way interactions of status � each trait
were included as predictor variables. Models were fit using the
“gls” function in the “nlme” package (v.3.1-119; Pinheiro
et al. 2015).

To examine species variation in consumer preferences, we used
a linear mixed model with proportion seeds removed as the
response variable, consumer type, species, and their interaction as
predictor variables, and station as a random factor. We also exam-
inedwhether proportion seeds removeddifferedwithin each confa-
milial pair; these models included consumer type, status, and their
interaction as predictors and station as a random factor.

Results

Differences in Seed Traits and Predation Between Extirpated
and Extant Species

Extirpated and extant taxa did not differ in their seed traits (Table S2).
Species varied in seed mass (F11,228 = 215.82, p < 0.0001) and
water content (F10,205 = 5.99, p < 0.0001; Table S2; Fig. 2). The
Baptisia, Liatris, and Silphium demonstrated higher seed mass in
extirpated than extant species (the only exception was the Lamia-
ceae, which demonstrated the opposite pattern) (Table S3;

Fig. 2A). In theApiaceae,Baptisia, Liatris, andRatibida, extant spe-
cies had higher water content than extirpated species (Fig. 2B).
Finally, in theApiaceae, Lamiaceae, andRatibida, extirpated species
had a higher C:N ratio than extant species (Fig. 2C). Seed traits were
not phylogenetically conserved (Table S1).

Granivory did not differ between extirpated versus extant
species (status χ21,14.85 = 0.35, p > 0.5; Table S4).

Different Seed Preferences Between Small Mammals and
Arthropods

Mammals consumed almost twice as many seeds as arthropods,
regardless of extirpation status (consumer χ21,856.4 = 81.96,
p < 0.0001; mammals = 45.2 � 3.14% vs. arthropods = 21.3 �
3.13%seedsremoved;TableS4;Fig.3).Mammalsalsotendedtocon-
sume larger-seeded species (mass χ21,4 = 4.01, p = 0.11), while
arthropods consumed small-seeded species (mass χ21,4 = 13.72,
p=0.02) (although thispattern tended tobemorepronouncedamong
extant species; status � mass χ21,4 = 4.38, p = 0.10; Table S5;
Fig. S2; Fig. 4A). This pattern was similar when controlling for phy-
logeny. When controlling for phylogeny, small mammal herbivory
tended to be higher on larger seeds (t= 2.49, p= 0.06) while arthro-
pods tended to consume smaller seeds (t = �2.47, p = 0.06;
Table S5). Small mammal and arthropod preferences did not differ
for water content or C:N ratio (Table S5; Fig. 4B & 4C). However,
whencontrolling for phylogeny, arthropods tended to consumeseeds
with higher C:N (lower nitrogen content), especially among extant
species’ seeds (status � C:N t=�2.43, p= 0.07) (Table S5).

Consumers preferentially consumed certain species (consu-
mer � species χ211,845.21 = 490.08, p < 0.0001; Fig. 5;
Tables S7B & S9). Arthropods consumed more Lamiaceae spe-
cies while mammals consumed more Liatris species, Silphium
species, and Eryngium yuccifolium (Table S6). Mammals and
arthropods did not differ in their consumption of Ratibida, Bap-
tisia, or Thaspium trifoliatum.

Figure 5. Proportion of seeds removed (least square means � SE) by arthropods (light blue squares) versus small mammals (lavender circles; estimated as the
difference in seed predation between “All Consumer” and “Arthropod Only” trays) across the six confamilial pairs (12 extirpated vs. extant species) included in
this study. Letters represent differences in consumer preference within a genus (e.g. mammals consumed significantly more extant Eryngium yuccifolium
[Apiaceae] seeds than arthropods did) at the α = 0.05 level (Tukey tests).
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Discussion

Seed removal in a restored prairie depended on granivore iden-
tity and seed size but not extirpation status. Most seed removal
occurred via small mammals. Small mammals preferred larger
seeds while arthropods consumed smaller seeds and seeds with
high C:N (less nitrogen content). Preferences for these traits
likely have ecological consequences for plant and granivore
communities in restored prairies, as seed consumption can affect
seedling emergence and community composition (Howe &
Brown 2001). Additionally, extant and extirpated species expe-
rienced similar granivory, likely due to the similarity in their
seed traits, suggesting that seed predation on rare species may
not be a critical management consideration in prairie restora-
tions whose goal is to restore rare or threatened species.

No Differences in Seed Traits or Granivory Between Extirpated
and Extant Species

Overall, locally extinct and extant species did not differ in their
seed traits. However, within phylogenetic pairs, extirpated spe-
cies’ seeds tended to have lower nitrogen content (higher C:N)
and be heavier than extant species. High seed nitrogen content
has been linked to increased germination and seedling establish-
ment (Hara & Toriyama 1998; Naegle et al. 2005). Here, lower
seed nutritional resources could correlate with extirpation events.
Seed mass is a key fitness-related trait (Adler et al. 2014), as spe-
cies with large seeds may demonstrate reduced seed production
(Venable 2007; Cochrane et al. 2015) but higher seedling survival
(Moles & Westoby 2004) (although seed size does not corre-
late with greater germination or establishment in this system;
Fig. S3). Demographic studies on these species reveal that extir-
pated species produce significantly fewer seeds than extant species
(M. Zettlemoyer, 2021, unpublished data), supporting a potential
trade-off between large seed size and reduced seed production in
some plant families.

We detect no evidence that granivory differed between the
extirpated and extant species studied here. Similarly, perennial
plants can be robust to <50% seed harvest rates (Meissen
et al. 2017), and 30% seed removal (via caging 70% of repro-
ductive plants) leads to a relatively low (0.2–31.7%) probability
of extinction in a rare herb (Kurkjian et al. 2017), suggesting that
the low rates of granivory detected here may not correlate with
high extinction risk. Future work should compare extinction risk
(i.e. population growth rates) with and without granivory esti-
mates incorporated into population models.

Differences in Granivore Preferences for Seed Traits

Similar to previous studies, small mammals preferred large
seeds (Abramsky 1983; Celis-Diez et al. 2004; Connolly
et al. 2014; Chen & Valone 2017; Dylewski et al. 2020; but
see Kollmann et al. 1998; Gong et al. 2015). This relationship
was independent of extirpation status. In most mammals, a pos-
itive relationship exists between granivore body size and seed
size preference (Chen & Moles 2015). We also detected a pref-
erence for smaller seeds among arthropods, similarly to
Mittelbach and Gross (1984) and Pearson et al. (2014). These

seed size preferences are consistent with optimal foraging theory
(Dylewski et al. 2020) as consumer differences likely correlate
with differences between seed-handling ability (e.g. mouth size,
time to tear seed apart) and optimal net rate of energy intake
(Kerley & Erasmus 1991). However, consumers not considered
here (e.g. smaller seed predators or fungi) could also have con-
sumed smaller-seeded species. Altogether, our data are consis-
tent with the idea that body size filters what seeds are suitable
for granivores, although other seeds traits will inform diverse
seed predator preferences.

Arthropods also tended to consume seeds with higher C:N
ratios, or seeds with lower nitrogen content, while mammals
favored seeds with higher nitrogen content (lower C:N ratio)
(although this pattern was only true when controlling for phylo-
genetic relationships). This may be due to different nutritional
needs between small mammals and arthropods. Nutritional
needs (e.g. nitrogen/protein; Mariotti et al. 2008) are often
higher in larger-bodied animals due to higher metabolic rates,
which often scale with body size (Reichle 1968; Nagy 1994).
Although small mammals preferred seeds with high nitrogen
content, they did not consume large quantities of the two
legumes (nitrogen-fixing species) in our study, Baptisia tinc-
toria and B. bracteata. This could be because some granivores
can distinguish structural strength of seeds (Lundgren &
Rosentrater 2007), and these Baptisia have hard seed coats;
because Baptisia contain secondary chemicals, especially alka-
loids, that can deter herbivores (Cranmer & Turner 1967); or
due to high pre-dispersal predation in Baptisia (Petersen
et al. 1998). This finding again supports optimal foraging theory
wherein body size correlates with nutrients needed for energy
gain (Pyke 1984).

Granivory by both small mammals and arthropods was phy-
logenetically conserved in this system, suggesting that other
phylogenetically conserved traits might influence patterns of
granivory. For example, the Lamiaceae seeds have a strong odor
(M. Zettlemoyer, 2019, personal observation) that could serve as
a deterrent or attractor (Taylor et al. 2020). Chemical defenses
such as high phenol, tannin, or alkaloid content also result in
lower predation (Gong et al. 2015) and can differ between con-
geners (Siemens et al. 1992), but were not measured here. Addi-
tionally, other traits like seed coat thickness are not accounted
for by measurements like seed mass, which also likely impact
feeding preferences (Blaney & Kotanen 2001; Sih & Christen-
sen 2001). We note that the phylogenetic conservatism of gran-
ivory could also be due to the abundance of Asteraceae species
included in this study.

Importance of Small Mammals as Granivores

Small mammals contributed most to granivory in this restored
prairie. This result mirrors previous studies in grasslands, which
find that mammals are a prominent granivore (Klinkhamer
et al. 1988; Hulme 1994; Reed et al. 2004; Pellish et al. 2017),
although other studies in this area find that insects remove more
seeds than small mammals in first-year prairie restorations
(Linabury et al. 2019). This may be because arthropod commu-
nities likely differ between first-year prairie restoration and
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older, established prairies (Woodcock et al. 2021). Small mam-
mal granivory is also likely high in this older restored prairie due
to its dense vegetation, as rodents often prefer high vegetation
cover while foraging (Ahlgren 1966; Clark & Kaufman 1990;
Hulme 1997). However, small mammal populations fluctuate
both seasonally and across years (Merritt et al. 2003), so future
studies might quantify small mammal granivory over multiple
seasons and years. The presence of large predators (e.g. hawks
and owls) could influence seed predation. Additionally, graniv-
ory by small mammals can decrease the number of seeds in a
prairie (Heggenstaller et al. 2006), potentially resulting in
reduced native seedling establishment, increased weed estab-
lishment, and lower native diversity (Schurr et al. 2004; Orrock
et al. 2009; Abernathy et al. 2016; Pellish et al. 2017). Preferen-
tial consumption of certain species by small mammals
(e.g. Silphium and Liatris) could alter local species composition
(Kerley & Erasmus 1991; Chambers & MacMahon 1994).
Future work might quantify how seed removal affects seedling
establishment and community composition in this system.
Understanding how small mammal consumption affects seed
losses could aid conservation and restoration efforts for the
native species examined here, which are used in tallgrass prairie
restorations (Grman et al. 2015).

Managing for Granivory in Restored Prairies

Here, we identify species with relatively high consumption rates
(species with >50% of seeds removed included Liatris punctata,
Silphium perfoliatum, S. terebinthinaceum) for which feeding
deterrents could be developed and applied during restoration
(e.g. vertebrate exclosures, feeding deterrents like capsaicin
[Hemsath 2007; Pearson et al. 2018] or bergamot oil [Taylor
et al. 2020], or the addition of sterilized birdseed to deter preda-
tion on native seeds [Riebkes et al. 2018]). We also find that
seeds with particular characteristics are more at risk of preda-
tion, suggesting that seed traits could be used to characterize
species’ risk of consumption prior to establishment. This mirrors
the growing evidence that plant traits can be used to generalize
potential management effects (Clark et al. 2012; Zirbel
et al. 2017). For example, in prairie restorations with large popu-
lations of small mammals such as meadow voles and field mice,
it might be useful to compensate for seed removal of species
with large seeds by tailoring seed mixes (e.g. doubling seeding
density in the case of highly preferred species; Orrock
et al. 2009) or protecting seeds by caging reproductive individ-
uals (Kurkjian et al. 2017). The seed predation rates observed
here were in an established, 20-year-old restoration, and seed
predation on these same species might differ in more recent prai-
rie plantings with different plant, small mammal, or arthropod
communities. Finally, we find that granivory is similar on extant
and extirpated species. This suggests that introductions of rare or
extirpated species need not focus on a higher risk of seed preda-
tion for these species’ establishment. For example, eight prairie
species that had not been recorded in naturally occurring popu-
lations in Kalamazoo County since the 1940s were reintroduced
into 29 restored prairies in southwestern Michigan (Grman
et al. 2015); these restorations likely do not need to consider

additional management for granivory on reintroduced extirpated
species.

This study shows that seed traits and species identities, but
not extirpation status, influence the feeding preferences of gran-
ivores in established prairie restorations. Small mammals
accounted for the majority of seed losses. Future work should
link granivory to plant establishment and population growth
rates in restored prairies as well as develop protocols to reduce
the effects of small mammal granivory on seed predation in res-
torations. This research illustrates a prominent role of seed pre-
dation, particularly by small mammals, in older restored
prairies, suggesting that understanding how plant traits affect
species interactions may be important for predicting biodiversity
outcomes in prairie restorations.
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